ARULMIGU PALANIANDAVAR ARTS COLLEGE FOR WOMEN, PALANI

DEPARTMENT OF MATHEMATICS

ALLIED MATHEMATICS II :

INTEGRAL CALCULUS, DIFFERENTIAL EQUATIONS, LAPLACE TRANSFORMS AND VECTOR ANALYSIS

Prepared by Dr.V.P.ANUJA

ARULMIGU PALANIANDAVAR ARTS COLLEGE FOR WOMEN (AUTONOMOUS) (Affiliated to Mother Teresa Women's university) Palani – 624 615. Integral calculus, Differential Equations, Laplace Transform and Vector Analysis. **Allied Mathematics - II** UNIT - I 1. State Bernoulli's Theorem (Ans: $\int uv \, dx = uv_1 - u'v_2 + u''v_3 - u'''v_4 + \dots$) 2. If f(x) is an odd function of x, then $\int_{-a}^{a} f(x) dx =$ _____. (Ans: 0) 3. If f(x) is an even function of x, then $\int_{-a}^{a} f(x) dx =$ _____. (Ans: $2\int_0^a f(x)dx$) 4. The value of $\int_{0}^{\frac{1}{2}} sin^{4}x dx$ is given by a) $\frac{3\Pi}{16}$ b) $\frac{5\Pi}{8}$ c) $\frac{3\Pi}{8}$ d) $\frac{3}{8}$ (Ans: a) 5. The value of $\int tanx \, dx =$ ______. (Ans: $\log \sec x + c$) 6. $\int f(x) dx$ is called ______ the range of integration is not specified (Ans: Indefinite integral) 7. The value of $\int_0^1 (3x^2 + 2x) dx$ is given by a) 0 b) 2 c) 1 d) -1 (Ans: b)8. The value of $\int \sec x \, dx$ is given by a) $\log \cos x + c$ b) $\log \sin x + c$ c) $\log \sec x + c$ b) d) $\log(\sec x + \tan x) + c$ (Ans: d) 9. ______ is the standard device for integration. (Ans: Integration by parts)

- 10. The value of $\int \cot kx \, dx =$ ______. a) log coshx+c b) log sinhx +c c) log tanhx +c d) None (Ans: b) 11. The value of $\int_{0}^{\frac{\pi}{2}} \cos^{5}x \, dx =$ ______. a) $\frac{4}{15}$ b) $\frac{8}{15}$ c) $\frac{15}{8}$ d) $\frac{5}{6}$ (Ans: b) 12. The value of $\int_{0}^{\frac{\pi}{2}} \sin^{6}x \, dx$ is given by a) $\frac{32}{5\pi}$ b) $\frac{5\pi}{32}$ c) $\frac{15}{48}$ d) $\frac{5\pi}{64}$ (Ans: b) 13. $\int_{0}^{\frac{\pi}{2}} \sin^{n}x \, dx =$ ______ if n is even integer. (Ans: $\frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \frac{n-5}{n-4} \dots \cdot \frac{1}{2} \cdot \frac{\pi}{2}$) 14. A formula by which the power of any variable in the integral is reduced is called a ______. (Ans: Reduction formula)
- 15. f(x) is odd if f(-x) =_____ a) - f(x) b) 2 f(x) c) 0 d) - f(-x)(Ans: a)
- 16. The value of $\int \frac{1}{x} \cdot \frac{1}{\sqrt{1 + \log x}} dx$ is given by a) $\log \sqrt{1 + \log x} + c$ b) $e^x (1 + \log x) + c$ c) $2\sqrt{1 + \log x} + c$ d) $e^x \sqrt{1 + \log x} + c$ (Ans: c)

17. The value of
$$\int \frac{e^x}{e^{x}+20} dx =$$
 ______.
(Ans: $log(e^x + 20) + c$)

18. The value of $\int \cos(ax + b) dx =$ _____. (Ans: $\frac{1}{a} \sin(ax + b) + c$) 19. The value of $\int \frac{1}{ax+b} dx =$ _____.

$$(Ans: \frac{1}{a}log(ax + b) + c)$$

$$20.\int e^{ax} [a f(x) + f'(x)] dx = \underline{\qquad}.$$
(Ans: $e^{ax} f(x) + c$)

<u>UNIT - II</u>

21. The smallest positive value of P f(x + p) = f(x) is true for every value of x is called ______ of the function. (Ans: period) 22. Sinnx is a period functions of period _____ $(Ans: \frac{2\Pi}{n})$ 23.F(x) = $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_0 \cos nx + b_n \sin nx)$ then the RHS series of sines and cosines is called _____ of f(x). (Ans: fourier series) 24. In fourier series f(x) is single valued and finite in _____ a) $(0, \Pi)$ b) $[0, \left(\frac{\Pi}{2}\right)]$ c) $(0, 2\Pi)$ d) $[0, \left(\frac{\Pi}{4}\right)]$ (Ans: c)25. In fourier series f(x) a _____ number of maxima or minima in (0,2Π). a) *Infinite* b) *finite* c) equal d) unequal (Ans: b)26. In F(x) = $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_0 \cos nx + b_n \sin nx) a_0, a_n, b_n$ are called (Ans: fourier co - efficients) 27. A function f(x) is said to be periodic iff _ [Ans: f(x + p) = f(x)] 28. The value of $\text{Sinn}\Pi =$ _____. (Ans: 0) 29. The value of $\cos n\Pi =$ _____. $(Ans:(-1)^n)$ $30.\int_{0}^{\Pi} f(sinx)dx =$ ______. a) $2\int_{0}^{\Pi} f(sinx)dx$ b) $\int_{0}^{\frac{\Pi}{2}} f(sinx)dx$ c) $2\int_{0}^{\frac{\Pi}{2}} f(sinx)dx$

d)
$$2\int_{0}^{\frac{\pi}{2}} f(\cos x) dx$$
 (Ans: *c*)

31. If f(x) is continuous at x = a in $(0,2\Pi)$ then the n value of Fourier series at x=a is equal to ______. a) a_0 b) a_n c) f(a) d) f(x)(Ans: c)

32. If f(x) is discontinuous at x=a in $(0,2\Pi)$ then the nvalue of fourier series at x=a is equal to _____.

a)
$$\frac{1}{2}f(a +) + f(a -)$$
 b) $f(a +) + f(a -)$
c) $\frac{1}{2}f(a -) - f(a +)$ d) $\frac{1}{2}f(a) - f(a)$
(Ans: *a*)

33. The value of the fourier at x=0 or $x=2\Pi$ is equal to the value of

$$[\operatorname{Ans:} \frac{1}{2}f(0+) + f(2\Pi-1)]$$
34. If the fourier series $f(x) = x^2$ in $(-\Pi, \Pi)$. Find the value of a_0
a) $\frac{3}{2}\Pi^2$ b) $\frac{2}{3}\Pi^2$ c) $\frac{2}{3}\Pi^3$ d) $\frac{3}{2}\Pi^3$
(Ans: b)

35.Say True or False

In the Fourier series f(x) = x in $(-\Pi, \Pi)$ the value of a_0 is zero. (Ans: *True*)

36.In Fourier series $F(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_0 \cos nx + b_n \sin nx)$ where $a_n = \underline{\qquad}$

(Ans: $\frac{1}{\Pi} \int_{0}^{2\Pi} f(x) cosnxdx$) 37.In Fourier series $F(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_0 cosnx + b_n sinnx)$ where $b_n =$ ______. (Ans: $\frac{1}{\Pi} \int_{0}^{2\Pi} f(x) sinnxdx$

38.If n≠0 $\int_{c}^{c+2\Pi} cos^2 nx dx =$ _____. a) $-\Pi$ b) Π c) 2Π d) 0 39.If n≠0 $\int_0^{2\Pi} sinnxdx =$ _____. a) Π b) 0 c) 2Π d) $-\Pi$

(Ans: *b*)

40.Say True or False If $m \neq 0 \int_0^{2\Pi} sinmx sinnx dx = 0$

(Ans : True)

UNIT - III

41.An equation is of the form $\sum F_i dx_i = 0$ is called ______ in n. (Ans : Pfaffian differential equation) 42.An equations of the form Pdx+Qdy+Rdz=0 where P,Q,R are functions of x,y,z is called_____ (Ans :Total differential equation) 43. The auxillary equations can be solved by_____ (Ans:Lagrange's Method) 44.xP+yQ+zR=C is the solution of Pdx+Qdy+Rdz=0 when it is exact and of degree $n \neq -1$ (Ans : Homogeneous) 45. Say true or false A partial differential equation involves in partial derivatives (Ans : True) 46) Say true or false If the number of constants to be eliminated is not equal to the number of independent variables (Ans :False) 47. The claurit's equation is (Ans: y=px+f(p))

48. The claurit's form of p=log(px-y) is given by ______
a)y=px-e^p b)y=px+e^p c)y=px+logp d)y=p-logpx
(Ans: a)
49.In partial differential equation by eliminating arbitrary constants a&b
from z=(x+a)(x+b) is ______
a)z=p/q b)z=p+q c)z=pq d)none
(Ans : z=pq)
50.The auxillary equation of the partial differential equation
$$2p+3q=1$$

is ______
(Ans : $\frac{dx}{2} = \frac{dy}{3} = \frac{dz}{1}$)
51.The general solution of p=log(px-y) is ______
(Ans : y=px-e^p)
52.Pp+Qq=R is called ______ linear equation
(Ans : Lagrange)
53.Necessary and sufficient conditions for integrability of
Pdx+Qdy+Rdz=______
(Ans : 0)
54.If z=(x²+a)(y²+b) where a,b are constants then $\frac{\partial z}{\partial x} = ______
(Ans : 2x+y2)
55.Say true or false$

The order of partial differential equation is the order of highest derivative occurring in it.

(Ans : True)

56. Say true or false

The partial differential equation of all spheres whose centre is (a,b,0)and whose radius r is $z^2(p^2+q^2+1)=r^2$

(Ans : True)

57.Form the partial differential equation by eliminating the arbitrary functions from $z=f(x^2+y^2)$

(Ans:py-qx=0)

58.If $z=x^2+2f[(1/y)+\log x]$ Find $\frac{\partial z}{\partial x}$ (Ans:2x+2f'[(1/y)+logx](1/x))59.If $z=f(x^2+y^2)$ find $\frac{\partial z}{\partial y}$ $(Ans:f'(x^2+y^2)2y)$ 60.f(x,y,z,a,b)=0 is said to be the _____ of the first order differential equation $\varphi(x,y,z,p,q)=0$ (Ans : Complete Solution) UNIT - IV 61.F(s) = $\int_0^\infty e^{-st} f(t) dt$ is called _____. (Ans: Laplace transform) The value of $L(e^{at}) =$ _____ if (s-a) > 0. a) $\frac{1}{s^2+a^2}$ b) $\frac{1}{s+a}$ c) $\frac{a}{s^2-a^2}$ d) $\frac{1}{s-a}$ 62. (Ans: d)63. Find Laplace transfom of t^n a) $\frac{n!}{s^{n+1}}$ b) $\frac{n!}{s^n}$ c) $\frac{(n+1)!}{s^{n+1}}$ d) $\frac{(n-1)!}{s^n}$ (Ans: a)64.If L[f(t)] = F(s) then $L[e^{-at}f(t)] =$ _____. (Ans: [F(s + a)])65. The Inverse Laplace Transform of $\frac{s}{s^2+a^2}$ b) cosat c) sinht d) *cos*⁻¹*at* a) *sinat* (Ans: b)66.Say T rue or False $L^{-1}[F(s + a)] = e^{-at}L^{-1}[F(s)]$ (Ans: True) 67.Laplace transform is linear. (Ans: True) 68. Inverse Laplace transform is linear. (Ans: True)

69.L [sinat sinbt] = L[sinat]. L[sinbt]

(Ans: false)
70.Laplace transform of t [f(t)] = ______.
a)
$$\frac{d}{ds}$$
 [F(s)] b) $-\frac{d}{ds}$ [F(s)] c) $-\frac{d^n}{ds^n}$ [F(s)] d) $\frac{d^n}{ds^n}$ [F(s)]
(Ans: b)
71. Laplace transform of f '(t) = ______.
(Ans: S L[f(t)] - f(0))
72. Laplace transform of f ''(t) = ______.
(Ans: S L[f'(t)] - f'(0))
73.L⁻¹ $\left[\frac{1}{(s-1)^2}\right]$ is = _____.
a) e^t b) $t + e^t$ c) te^{-t} d) te^t
(Ans: d)
74. The Laplace transform L of f(x) is defined by
(Ans: $\int_0^\infty e^{-sx} f(x) dx$)
75. The value of L (1) is given by ______.
a) 1 b) 0 c) $\frac{1}{s}$ d) $\frac{1}{2s^{3/2}}$
(Ans: c)
76. L(\sqrt{x}) = _____.
a) $\frac{1}{s^2}$ b) $\frac{\sqrt{\pi}}{2s^{3/2}}$ c) $\frac{\sqrt{\pi}}{3s^{3/2}}$ d) $\frac{\pi}{2s^{3/2}}$
(Ans: b)
77. L[f(ax)] is

a)
$$\frac{1}{a} F(s)$$
 b) $\frac{1}{a} F\left(\frac{s}{a}\right)$ c) $\frac{1}{a} F\left(\frac{a}{s}\right)$ d) $a F(s)$
(Ans: b)

78.Say True or False

If L[f(t)] = F(s), then $L[e^{-at}f(t)] = F(s+a)$ is known as first shifting theorem. (Ans: *True*)

79.
$$L^{-1}\left[\frac{1}{s^n}\right] =$$
 (Ans: $\frac{t^{n-1}}{(n-1)!}$)

80. $L^{-1}[e^{ax}] =$ _____.

$$\left(\text{Ans: } \frac{1}{s-a} \right)$$

UNIT - V

81.If f(p) is a vector then the function f(p) is called a _____function. (Ans : vector point)

 $82.\frac{d}{dt}(r.r) = _$ a) $r\frac{dr}{dt}$ b) $2r\frac{dr}{dt}$ c) $r\frac{dt}{dr}$ d) $2r\frac{dt}{dr}$ (Ans : b)83.If f is a constant vector $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$ are all zeros and hence_____ (Ans :curl f=0 or div f=0) 84.If f is a vector such that curl f=0 for all points in the region ,then it is called an _____ (Ans : irrotational vector) 85.Grad φ is defined by (Ans: $\nabla \varphi = i \frac{\partial \varphi}{\partial x} + j \frac{\partial \varphi}{\partial y} + k \frac{\partial \varphi}{\partial z}$) 86. The vector differential operator ∇ is defined by (Ans: $\nabla = i\frac{\partial}{\partial x} + j\frac{\partial}{\partial v} + k\frac{\partial}{\partial z}$) 87. The divergence of f is defined by_____ (Ans: ∇ . f = $\frac{\partial f1}{\partial x} + \frac{\partial f2}{\partial y} + \frac{\partial f3}{\partial z}$) 88.If f is a vector such that div f=0 then it is said to be_____ (Ans: Solenoidal) 89.If r is a vector of constant direction, then $r \times \frac{dr}{dt} =$ _____ a)0 b)1 c)2 d)-1 (Ans: a)90.Say true or false $Grad(\phi \Psi) = \phi grad \Psi + \Psi grad \phi$ (Ans : True)

91.If $r=xi+yj+zk$ then div $r=$
a)0 b)3 c)2 d)1
(Ans :b)
92. Say true or false
$div(u \times v) = v.curl u + u.curl v$
(Ans :False)
93. $\nabla^2 = \frac{\partial^2}{\partial x} + \frac{\partial^2}{\partial y} + \frac{\partial^2}{\partial z}$ is called the
(Ans: Laplacian Operator)
94.If A &B are irrotational then A×B is
(Ans :Solenoidal)
95.Find $\nabla \varphi$ to the surface $x^2y - 2xz^2 = 8$ at the point (1,0,2) is
a) $8i+j+8k$ b) $4i+j+8k$ c) $4i+4j+8k$ d)none
(Ans: a)
96.Say true or false
div f is a scalar
(Ans : True)
97. Say true or false
curl f is a vector
(Ans : True)
98. The value of $\nabla \times (\nabla \varphi)$ is
(Ans :0)
99. $\nabla \phi. dr =$
a)1 b)0 c)2 d)-1
(Ans : b)
100. Say true or false
If $r=xi+yj+zk$ then curl $r=0$
(Ans : True)

ARULMIGU PALANIANDAVAR ARTS COLLEGE FOR WOMEN (AUTONOMOUS)

(Affiliated to Mother Teresa Women's University, Kodaikanal) (NATIONALLY RE-ACCREDITED WITH "A" GRADE BY NAAC)

PALANI.

STATISTICS

PART - A

- 1. ----- tell us the direction and extent of asymmetry in a series permit us to compare two or more series Ans: Measures of skewness
- 2. Karl pearson coefficient of skewness is defined by $S_{kp} = -----$ Ans : (Mean-Mode)/(Standard deviation) or 3(Mean-Median)/ σ
- 3. Bowley's coefficient of Skewness is given by S_{KB} = ------

Ans: $(Q_3+Q_1-2Median)/(Q_3-Q_1)$

- 4. The moment about mean are called the ----- Ans: Central moment(μ)
- 5. If $\beta_1 = 0$ the distribution is -----Ans: Symmetric
- 6. $\beta_1 > 0$ the frequence distribution has -----Ans: Positive Skewness
- 7. If $\beta_1 < 0$ the If frequence distribution has ------Ans: Nagative Skewness
- 8. The rth moment about any point A denoted by μ_r is defined by------Ans: $\mu_r = \sum f_i (X-A)^r / N$
- 9. The rth moment about arithmetic mean Xof a frequency distribution is given by ------Ans: $\mu_r = \sum f_i (X_I X)^r / N$
- $10.\beta_1 =$ ------ is called the measure of skewness⁻ Ans: $\beta_1 = \mu_3^2 / \mu_2^3$
- 11.In Symmetric distribution odd moments are always ------Ans: Zero
- 12.----is the degree of peakedness of a distribution usually taken relative to a normal distribution Ans: Kurtosis

- 13.For a curve the normal curve $\beta_2 <3$ or $\gamma_2 <0$ and such a curve is known as----------Ans: Platykurtic
- 14. For a curve the normal curve $\beta_2 >3$ or $\gamma_2 >0$ and such a curve is known as----------Ans: Leptokurtic
- 15.For a normal curve $\beta_2 = 3$ or $\gamma_2 = 0$ and such a curve is known as------Ans:Messokurtic
- 16.Karl pearson and Bowley's are -----Ans: absolute measures of skewness
- 17. The most important measure of Kurtosis is the value of the coefficient β_2 is defined as------ Ans: $\beta_2 = \mu_4 / \mu_2^2$
- 18. γ_2 is used as measure of defined as -----Ans: $\gamma_2 = \beta_2$ -3
- 19. $\mu_2 = \mu_2^1 (\mu_1^1)^2$ is the -----of the frequency distribution Ans: Variance
- 20. The first moment μ_1 about origin coiocides with the ------of the frequency distribution. Ans: Arithmetic mean
- 21. The karl pearson co-efficient of correlation is _____ Ans : $r=\sum(X_i-\ddot{X})(Y_i-\bar{Y})/N\sigma_x\sigma_y$
 - Ans : $\underline{\mathbf{r}} = \underline{\sum} (\underline{\mathbf{X}}_{i} \mathbf{X}) (\underline{\mathbf{Y}}_{i} \underline{\mathbf{Y}}) / \mathbf{N} \mathbf{\sigma}_{\mathbf{X}} \mathbf{\sigma}_{\mathbf{Y}}$
- $22.\sigma_x$ is the ______ of series X. Ans: standard deviation
- 23. The value of the co-efficient of correlation always lie between ______ A)+1 B)-1 C) ± 1 D)0 Ans : ± 1
- 24.In correlation when r=-1,it means there is ______negative_correlation between the variables. Ans : Perfect
- 25.In correlation when r=+1,it means there is perfect ______ correlation between the variables. Ans :Positive
- 26.In correlation when_____, it means there is no relationship between the two variables. Ans : r=0
- 27. The covariance of two series X and Y is defined by

Ans : $cov(X,Y) = \sum (X_i - \ddot{X})(Y_i - \bar{Y})/N$

- 28.Direct method of finding out correlation co-efficient is
- 29. $r = {N \sum X_i Y_i (\sum X_i)(\sum Y_i)} / {\sqrt{N \sum X_i^2 (\sum X_i)^2 \sqrt{N \sum Y_i^2 (\sum Y_i)^2}}}$
- 30. The formula for calculating the co-efficient of correlation of grouped data is

Ans: r= $\frac{N\sum fd_xd_y - (\sum fd_x)(\sum fd_y)}{\sqrt{N(\sum fd_x^2) - (\sum fd_x)^2}\sqrt{N(\sum fd_y^2) - (\sum fd_y)^2}}$

- 21.when the numbers is large, the data are often classified into______ called a correlation table. Ans : two way frequency distribution
- 22. The spearman's rank correlation co-efficient is defined as
 - Ans : R=1 -- $\frac{6\sum D^2}{N(N^2-1)}$

- 24.If the variables x&y are uncorrelated then _____ Ans: $\sum X \cdot \ddot{X} (Y \cdot \bar{Y})=0$.
- 25.The ______is added for each repeated rank of the variables. Ans: correction factor

26. The equation of the regression line of Y on X is _____Ans:Y- $\overline{Y} = \underline{r \sigma_y (X-\ddot{X})} \sigma_x$

- 27. The equation of the regression line of X on Y is _____Ans : $X-\ddot{X}=r \underline{\sigma_x}(Y-\bar{Y})$
- 28.If the curve is a straight line it is called a ______between the two variables. Ans : line of regression

 σ_v

 σ_v

 σ_{x}

- 29.If there is a functional relationship between the two variables X_i &Y_i the points in the scatter diagram will cluster around some curve called the _____ Ans : curve of regression.
- 30. The regression co-efficient of X on Y is given by $b_{xy} = r.\underline{\sigma}_x$

31. The regression co-efficient of Y on X is given by $b_{yx} = r. \underline{\sigma}_y$

- 32.If one of the regression co-efficients is greater than unity the other is _____ Ans : less than unity.
- 33. The sign of the correlation co-efficient is the same as that of ______ Ans : regression co-efficients.
- 44.The correlation co-efficient is the _____between the regression co- efficients. Ans : geometric mean.
- 45.______of the regression co-efficients is greater than or equal to the correlation co-efficient. Ans: Arithmetic mean
- 46. The two variables are uncorrelated then the lines of regression are

_____to each other.Ans: perpendicular

- 47.The obtuse angle between the regression lines is given by Ans : $\tan^{-1}[(r^2-1/r) (\sigma_x \sigma_y / \sigma_x^2 + \sigma_y^2)].$
- 48. The angle between two regression lines is given by Ans : $\theta = \tan^{-1}[(r^2-1)/r) (\sigma_x \sigma_y / \sigma_x^2 + \sigma_y^2)].$
- 34.45.If there is a perfect correlation between the two variables then the two regression lines ______Ans : coincide.
- 50.If r=±1,then θ =0 or π , then the two lines of regression are _____ Ans : Parallel.
- 51. The probability attached to such an event is caled the ______ and is denoted by P(A/B). Ans: conditional probability
- 52. The two events A and B are dependent then the conditional probability of B given Ais _____ Ans : P(B/A) = P(AB)/P(A).
- $53.P(A \cap B) = P(A) P(B/A)$ this relation is called ______ theorem for probabilities. Ans: multiplication
- 54.A is said to be independent of B if _____ Ans : P(A/B) = P(A).

55.If A and B are two independent events then _____ Ans : $P(A \cap B) = P(A)P(B)$.

- 56._____ is known as Baye's rule. Ans : $P(A_i/B) = {P(A_i)P(B/A_i)}/{P(B)}$
- 57. The events $A_1 A_2 \dots A_n$ are said to be ______ if $P(A_1 \cap A_2 \dots \cap A_n) =$
 - $P(A_1)P(A_2)...P(A_n)$. Ans : mutually independent
- 58.A set of events $A_1 A_2 \dots A_n$ are said to be ______ if $P(A_i \cap A_j) =$

 $P(A_i)P(A_j)$ for all $i \neq j$. Ans : pairwise independent

- 59.If $A_i \cap A_j = \omega$ for all i, j with $i \neq j$ then the sequence of subsets is said to be ______ Ans : mutually disjoint.
- 60.If ${}^{\infty}U_{n=1}A_n = S$ then the sequence of events is said to be_____ Ans : exhaustive.
- 61. The mathematical expectation of X, denoted by E(X), E(X) is defined by _____ Ans : $\sum \underline{P_i X_i}$.
- 62.A variable whose value is determined by the outcome of a random experiment is called a ______ Ans : random variable.
- 63.If the random variable takes the integer values it is called a ______ Ans : discrete random variable.
- 64.If the random variable takes all values, within a certain interval then the random variable is called a ______Ans : continuous random variable.

- 65. If $\int_{-\infty}^{\infty} f(x) dx = 1$ then f(x) is called the ______ of continuous random variable of X. Ans : probability density function
- 66. The function F:R \rightarrow R defined by F(x)=P(X \leq x) where $-\infty < x < \infty$ is called a ______ of the random variable of X.
- 67. A random variable is also known as stochastic variable.
- 68. The binomial distribution is also known as **Bernoulli distribution**.
- 69.A discrete random variable of the P.d.f. of ______ if r=0,1...n is said to have binomial distribution. Ans : $p(r)=nc rp^rq^{n-r}$
- 70.M.g.f of a binomial distribution about the origin is $A ns : (q+pe^t)^n$.
- 71.M.g.f about the mean np of a binomial distribution is A ns: $(qe^{-pt} + pe^{qt})^n$.
- 72. Characteristic function of binomial distribution is _____Ans : $(q + pe^{it})^n$.
- 73.Using M.g.f about the mean of the binomial distribution we can find μ_2,μ_3,μ_4 . Ans : central moments
- 74.If $X_1 \sim B(n_1,P)$, $X_2 \sim B(n_2,P)$ are independent random variables then $X_1 + X_2$ is _____ Ans : $B(n_1+n_2,P)$.

75.Recurrence relation for p(x) in binomial distribution is Ans:P(x+1)=(n-x/x+1) (p/q)P(x).

76.Recurrence formula of moments of the binomial distribution is

 $\underline{\qquad} Ans: \mu_{r+1} = pq[nr\mu_{r-1} + \underline{d\mu_r}]$

dp.

- 77.If (n+1)p is an integer will represent mode and the distribution is ______ Ans: bimodal.
- 78.If (n+1)p is not an integer will represent mode and the distribution is _____ Ans : unimodal.
- 79. The standard deviation of binomial distribution is ______Ans: \/npq.
- 80.The mean of binomial distribution is _____ Ans : np.
- 81.The two independent constants n and p in the distribution are known as the ______ of the distribution. Ans : parameters
- 82. Find the mode of a binomial distribution B(7,1/4) is _____Ans : 1&2.
- 83. The measure of skewness of the binomial distribution is _____Ans : $\gamma_1 = \sqrt{\beta_1}$.
- 84. The measure of kurnotosis of the binomial distribution is _____Ans : $\gamma_2 = \beta_2 3$.

85.A is defined as $P(x)=P(X=x)=\{\underline{e}^{-\lambda}\lambda^x \text{ if } x=0,1,2...$

{0 otherwise

Where λ is a parameter of the distribution. Ans : poisson distribution

- 86.Mean of the poisson distribution is _____Ans : λ .
- 87. The S.D of the poisson distribution is _____Ans : \sqrt{m} .
- 88.Recurrence relation of pdf in poisson distribution is _____ Ans : $p(x+1)=(\lambda/x+1) p(x)$.
- 89._____ of the poisson distribution is $\lambda 1 \le x \le \lambda$. Ans : Mode
- 90 .If λ is an integer λ -1 is also an integer then mode is ______ of the poisson distribution.Ans: bimodal
- 91. If λ is not an integer, then the mode will represented ______ of poisson

distribution. Ans : unimodal

- 92.M.g.f of the poisson distribution about r=0 is _____ Ans : $e^{\lambda(et-1)}$.
- 93. The value of $\lambda \sigma \gamma_1 \gamma_2 =$ _____Ans :1.
- 94.Characteristic function of the poisson distribution is ______Ans: $e^{\lambda(eit-1)}$.

Dr.K.MEENA M.Sc.M.Phil., PGDCA ., Ph.D., Assistant Professor and Head Department of Mathematics Arulmigu Palaniandavar Arts College for Women, Chinakalayamputhur, Palani-624615

Signature of the HoD with Seal

VPA

Staff in charge