ARULMIGU PALANIANDAVAR ARTS COLLEGE FOR WOMEN, PALANI

DEPARTMENT OF MATHEMATICS

ALLIED MATHEMATICS II :
INTEGRAL CALCULUS, DIFFERENTIAL EQUATIONS, LAPLACE TRANSFORMS AND VECTOR ANALYSIS

Prepared by
Dr.V.P.ANUJA

ARULMIGU PALANIANDAVAR ARTS COLLEGE FOR WOMEN (AUTONOMOUS)

(Affiliated to Mother Teresa Women's university) Palani-624 615.
Integral calculus, Differential Equations, Laplace Transform and
Vector Analysis.
Allied Mathematics - II
UNIT - I

1. State Bernoulli's Theorem

$$
\text { (Ans: } \left.\int u v d x=u_{1}-u^{\prime} v_{2}+u^{\prime} v_{3}-u^{\prime \prime} v_{4}+\ldots \ldots \ldots .\right)
$$

2. If $\mathrm{f}(\mathrm{x})$ is an odd function of x , then $\int_{-a}^{a} f(x) d x=$ \qquad .
(Ans: 0)
3. If $\mathrm{f}(\mathrm{x})$ is an even function of x , then $\int_{-a}^{a} f(x) d x=$ \qquad .
(Ans: $2 \int_{0}^{a} f(x) d x$)
4. The value of $\int_{0}^{\frac{\Pi}{2}} \sin ^{4} x d x$ is given by
a) $\frac{3 \Pi}{16}$
b) $\frac{5 \Pi}{8}$
c) $\frac{3 \Pi}{8}$
d) $\frac{3}{8}$
(Ans: a)
5. The value of $\int \tan x d x=$ \qquad .
(Ans: $\log \sec x+c$)
6. $\int f(x) d x$ is called \qquad the range of integration is not specified
(Ans: Indefinite integral)
7. The value of $\int_{0}^{1}\left(3 x^{2}+2 x\right) \mathrm{dx}$ is given by
a) 0
b) 2
c) 1
d) -1
(Ans: b)
8. The value of $\int \sec x d x$ is given by
a) $\log \cos x+c \quad b) \log \sin x+c$ c) $\log \sec x+c$
b) d) $\log (\sec x+\tan x)+c$
9. \qquad is the standard device for integration.
(Ans: Integration by parts)
10. The value of $\int \operatorname{coth} x d x=$ \qquad .
a) $\log \cosh x+c$
b) $\log \sinh x+c$
c) $\log \tanh x+c$
d) None
(Ans: b)
11. The value of $\int_{0}^{\frac{\pi}{2}} \cos ^{5} x d x=$ \qquad .
a) $\frac{4}{15}$
b) $\frac{8}{15}$
c) $\frac{15}{8}$
d) $\frac{5}{6}$
(Ans: b)
12.The value of $\int_{0}^{\frac{\Pi}{2}} \sin ^{6} x d x$ is given by
a) $\frac{32}{5 \Pi}$
b) $\frac{5 \Pi}{32}$
c) $\frac{15}{48}$
d) $\frac{5 \Pi}{64}$
(Ans: b)
12. $\int_{0}^{\frac{\pi}{2}} \sin ^{n} x d x=\ldots$ if n is even integer.
(Ans: $\frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \frac{n-5}{n-4} \ldots . \cdot \frac{1}{2} \cdot \frac{\Pi}{2}$)
13. A formula by which the power of any variable in the integral is reduced is called a \qquad .
(Ans: Reduction formula)
14. $f(x)$ is odd if $f(-x)=$ \qquad
a) $-f(x)$
b) $2 f(x)$
c) 0
d) $-f(-x)$
(Ans: a)
15. The value of $\int \frac{1}{x} \cdot \frac{1}{\sqrt{1+\log x}} d x$ is given by
a) $\log \sqrt{1+\log x}+c$
b) $e^{x}(1+\log x)+c$
c) $2 \sqrt{1+\log x}+c$
d) $e^{x} \sqrt{1+\log x}+c$
(Ans: c)
16. The value of $\int \frac{e^{x}}{e^{x}+20} d x=$ \qquad .

$$
\left(\text { Ans: } \log \left(e^{x}+20\right)+c\right)
$$

18. The value of $\int \cos (a x+b) d x=$ \qquad .

$$
\left(\overline{\text { Ans }: \frac{1}{a} \sin (a x+b)}+c\right)
$$

19. The value of $\int \frac{1}{a x+b} d x=$ \qquad .

$$
\left(\text { Ans: } \frac{1}{a} \log (a x+b)+c\right)
$$

20. $\int e^{a x}\left[a f(x)+f^{\prime}(x)\right] d x=$ \qquad

$$
\text { (Ans: } e^{a x} f(x)+c \text {) }
$$

UNIT - II

21. The smallest positive value of $\mathrm{P} f(x+p)=f(x)$ is true for every value of x is called \qquad of the function.
(Ans: period)
22. Sinnx is a period functions of period \qquad .
(Ans: $\frac{2 \Pi}{n}$)
23. $\mathrm{F}(\mathrm{x})=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{0} \cos n x+b_{n} \sin n x\right)$ then the RHS series of sines and cosines is called \qquad of $f(x)$.
(Ans: fourier series)
24. In fourier series $f(x)$ is single valued and finite in \qquad .
a) $(0, \Pi)$
b) $\left[0,\left(\frac{\Pi}{2}\right)\right]$
c) $(0,2 \Pi)$
d) $\left[0,\left(\frac{I}{4}\right)\right]$
(Ans: c)
25. In fourier series $f(x)$ a \qquad number of maxima or minima in $(0,2 \Pi)$.
a) Infinite b) finite c) equal d) unequal
(Ans: b)
26. In $\mathrm{F}(\mathrm{x})=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{0} \cos n x+b_{n} \sin n x\right) a_{0}, a_{n}, b_{n}$ are called \qquad
(Ans: fourier co - efficients)
27. A function $f(x)$ is said to be periodic iff \qquad .

$$
[\text { Ans: } f(x+p)=f(x)]
$$

28. The value of $\operatorname{Sinn} \Pi=$ \qquad .
(Ans: 0)
29. The value of $\cos n \Pi=$ \qquad .
(Ans: $\left.(-1)^{n}\right)$
30. $\int_{0}^{\Pi} f(\sin x) d x=$ \qquad -.
a) $2 \int_{0}^{\Pi} f(\sin x) d x$
b) $\int_{0}^{\frac{\pi}{2}} f(\sin x) d x$
c) $2 \int_{0}^{\frac{\Pi}{2}} f(\sin x) d x$
d) $2 \int_{0}^{\frac{\Pi}{2}} f(\cos x) d x$
(Ans: c)
31. If $f(x)$ is continuous at $x=a$ in $(0,2 \Pi)$ then the n value of Fourier series at $x=a$ is equal to \qquad .
a) a_{0}
b) a_{n}
c) $f(a)$
d) $f(x)$
(Ans: c)
32. If $f(x)$ is discontinuous at $x=a$ in $(0,2 \Pi)$ then the nvalue of fourier series at $x=a$ is equal to \qquad .
a) $\frac{1}{2} f(a+)+f(a-)$
b) $f(a+)+f(a-)$
c) $\frac{1}{2} f(a-)-f(a+)$
d) $\frac{1}{2} f(a)-f(a)$
(Ans: a)
33. The value of the fourier at $x=0$ or $x=2 \Pi$ is equal to the value of
\qquad .

$$
\left[\text { Ans: } \frac{1}{2} f(0+)+f(2 \Pi-1)\right]
$$

34.If the fourier series $\mathrm{f}(\mathrm{x})=x^{2}$ in $(-\Pi, \Pi)$. Find the value of a_{0}
a) $\frac{3}{2} \Pi^{2}$
b) $\frac{2}{3} \Pi^{2}$
c) $\frac{2}{3} \Pi^{3}$
d) $\frac{3}{2} \Pi^{3}$
(Ans: b)
35. Say True or False

In the Fourier series $\mathrm{f}(\mathrm{x})=x$ in $(-\Pi, \Pi)$ the value of a_{0} is zero.
(Ans: True)
36. In Fourier series $\mathrm{F}(\mathrm{x})=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{0} \cos n x+b_{n} \sin n x\right)$ where
\qquad
(Ans: $\frac{1}{\Pi} \int_{0}^{2 \Pi} f(x) \operatorname{cosn} x d x$)
37. In Fourier series $\mathrm{F}(\mathrm{x})=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{0} \cos n x+b_{n} \sin n x\right)$ where $b_{n}=$ \qquad .
(Ans: $\frac{1}{\Pi} \int_{0}^{2 \Pi} f(x) \operatorname{sinn} x d x$
38. If $\mathrm{n} \neq 0 \int_{c}^{c+2 \Pi} \cos ^{2} n x d x=$ \qquad .
a) $-\Pi$
b) Π
c) 2Π
d) 0
(Ans: b)
39. If $\mathrm{n} \neq 0 \int_{0}^{2 \Pi} \operatorname{sinn} x d x=$ \qquad .
a) Π
b) 0
c) 2Π
d) $-\Pi$
(Ans: b)
40. Say True or False

If $\mathrm{m} \neq 0 \int_{0}^{2 \Pi} \sin m x \sin n x d x=0$
(Ans : True)

UNIT - III

41. An equation is of the form $\sum \mathrm{F}_{\mathrm{i}} \mathrm{dx}_{\mathrm{i}}=0$ is called \qquad in n .
(Ans : Pfaffian differential equation)
42. An equations of the form $P d x+Q d y+R d z=0$ where P, Q, R are functions of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ is called \qquad
(Ans :Total differential equation)
43.The auxillary equations can be solved by \qquad
(Ans:Lagrange's Method)
43. $x P+y Q+z R=C$ is the solution of $P d x+Q d y+R d z=0$ when it is exact and \qquad of degree $n \neq-1$
(Ans : Homogeneous)
44. Say true or false

A partial differential equation involves in partial derivatives
(Ans: True)
46) Say true or false

If the number of constants to be eliminated is not equal to the number of independent variables
(Ans :False)
47.The claurit's equation is

$$
(\text { Ans : } y=p x+f(p))
$$

48. The claurit's form of $p=\log (p x-y)$ is given by \qquad
a) $y=p x-e^{p}$
b) $y=p x+e^{p}$
c) $y=p x+\log p$
d) $y=p-\log p x$
(Ans: a)
49.In partial differential equation by eliminating arbitrary constants $\mathrm{a} \& \mathrm{~b}$ from $z=(x+a)(x+b)$ is \qquad
a) $z=p / q$
b) $z=p+q$
c) $z=p q$
d)none
(Ans : $\mathrm{z}=\mathrm{pq}$)
50.The auxillary equation of the partial differential equation $2 p+3 q=1$ is \qquad

$$
\text { (Ans: } \frac{d x}{2}=\frac{d y}{3}=\frac{d z}{1} \text {) }
$$

51.The general solution of $p=\log (p x-y)$ is \qquad
(Ans : y=px-e ${ }^{p}$)
52. $\mathrm{Pp}+\mathrm{Qq}=\mathrm{R}$ is called \qquad linear equation
(Ans : Lagrange)
53.Necessary and sufficient conditions for integrability of $P d x+Q d y+R d z=$ \qquad
(Ans : 0)
54.If $\mathrm{z}=\left(\mathrm{x}^{2}+\mathrm{a}\right)\left(\mathrm{y}^{2}+\mathrm{b}\right)$ where a, b are constants then $\frac{\partial \mathrm{z}}{\partial x}=$ \qquad
(Ans: $2 \mathrm{x}+\mathrm{y}^{2}$)
55. Say true or false

The order of partial differential equation is the order of highest derivative occurring in it.
(Ans: True)
56. Say true or false

The partial differential equation of all spheres whose centre is $(a, b, 0)$ and whose radius r is $\mathrm{z}^{2}\left(\mathrm{p}^{2}+\mathrm{q}^{2}+1\right)=\mathrm{r}^{2}$
(Ans : True)
57.Form the partial differential equation by eliminating the arbitrary functions from $\mathrm{z}=\mathrm{f}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)$
(Ans : py-qx=0)
58.If $\mathrm{z}=\mathrm{x}^{2}+2 \mathrm{f}[(1 / \mathrm{y})+\log \mathrm{x}]$ Find $\frac{\partial \mathrm{z}}{\partial x}$
(Ans:2x+2f' $[(1 / y)+\log x](1 / x)$
59.If $\mathrm{z}=\mathrm{f}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)$ find $\frac{\partial \mathrm{z}}{\partial y}$
(Ans : f $\left.{ }^{\prime}\left(x^{2}+y^{2}\right) 2 y\right)$
60. $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{a}, \mathrm{b})=0$ is said to be the \qquad of the first order differential equation $\varphi(x, y, z, p, q)=0$
(Ans : Complete Solution)

UNIT - IV

61.F(s) $=\int_{0}^{\infty} e^{-s t} f(t) d t$ is called \qquad .
(Ans: Laplace transform)
62. The value of $L\left(e^{a t}\right)=$ \qquad if $(\mathrm{s}-\mathrm{a})>0$.
a) $\frac{1}{s^{2}+a^{2}}$
b) $\frac{1}{s+a}$
c) $\frac{a}{s^{2}-a^{2}}$
d) $\frac{1}{s-a}$
(Ans: d)
63. Find Laplace transfom of t^{n}
a) $\frac{n!}{s^{n+1}}$
b) $\frac{n!}{s^{n}}$
c) $\frac{(n+1)!}{s^{n+1}}$
d) $\frac{(n-1)!}{s^{n}}$
\qquad .
(Ans: $[\mathrm{F}(\mathrm{s}+\mathrm{a})]$)
65. The Inverse Laplace Transform of $\frac{s}{s^{2}+a^{2}}$
a) sinat
b) cosat
c) $\sinh t$
d) $\cos ^{-1} a t$
a) $\sin a t$
(Ans: a)
64.If $\mathrm{L}[\mathrm{f}(\mathrm{t})]=\mathrm{F}(\mathrm{s})$ then $\mathrm{L}\left[e^{-a t} f(t)\right]=$
(Ans: b)
66. Say T rue or False

$$
L^{-1}[\mathrm{~F}(\mathrm{~s}+\mathrm{a})]=e^{-a t} L^{-1}[\mathrm{~F}(\mathrm{~s})]
$$

(Ans: True)
67. Laplace transform is linear.
(Ans: True)
68. Inverse Laplace transform is linear.
69. L [sinat sinbt] $=\mathrm{L}[$ sinat $] . \mathrm{L}[\sin b t]$
(Ans: false)
70. Laplace transform of $\mathrm{t}[\mathrm{f}(\mathrm{t})]=$ \qquad .

$$
\text { a) } \left.\left.\left.\frac{d}{d s}[\mathrm{~F}(\mathrm{~s})] \mathrm{b}\right)-\frac{d}{d s}[\mathrm{~F}(\mathrm{~s})] \mathrm{c}\right)-\frac{d^{n}}{d s^{n}}[\mathrm{~F}(\mathrm{~s})] \mathrm{d}\right) \frac{d^{n}}{d s^{n}}[\mathrm{~F}(\mathrm{~s})]
$$

(Ans: b)
71. Laplace transform of $f^{\prime}(t)=$ \qquad .
(Ans: S L[f(t)] - f(0))
72. Laplace transform of $\mathrm{f}^{\prime \prime}(\mathrm{t})=$ \qquad .
(Ans: $\left.S L\left[f^{\prime}(t)\right]-f^{\prime}(0)\right)$
73. $L^{-1}\left[\frac{1}{(s-1)^{2}}\right]$ is $=$ \qquad .
a) e^{t}
b) $t+e^{t}$
c) $t e^{-t}$
d) $t e^{t}$
(Ans: d)
74. The Laplace transform L of $f(x)$ is defined by

$$
\text { (Ans: } \left.\int_{0}^{\infty} e^{-s x} f(x) d x\right)
$$

75. The value of $L(1)$ is given by

$$
\text { a) } 1 \quad \text { b) } 0 \text { c) } \frac{1}{s} \text { d) } \frac{1}{2 s^{3 / 2}}
$$

(Ans:c)
76. $\mathrm{L}(\sqrt{x})=$ \qquad .

$$
\begin{array}{llll}
\text { a) } \frac{1}{s^{2}} & \text { b) } \frac{\sqrt{\Pi}}{2 s^{3 / 2}} & \text { c) } \frac{\sqrt{\Pi}}{3 s^{3 / 2}} & \text { d) } \frac{\Pi}{2 s^{3 / 2}}
\end{array}
$$

(Ans: b)
77. $\mathrm{L}[\mathrm{f}(\mathrm{ax})]$ is
a) $\frac{1}{a} F(s)$
b) $\frac{1}{a} F\left(\frac{s}{a}\right)$
c) $\frac{1}{a} F\left(\frac{a}{s}\right)$
d) $a F(s)$
(Ans: b)
78. Say True or False

If $\mathrm{L}[\mathrm{f}(\mathrm{t})]=\mathrm{F}(\mathrm{s})$, then $\mathrm{L}\left[e^{-a t} f(t)\right]=\mathrm{F}(\mathrm{s}+\mathrm{a})$ is known as first shifting theorem.
(Ans: True)
79. $L^{-1}\left[\frac{1}{s^{n}}\right]=$ \qquad

$$
\left(\text { Ans: } \frac{t^{n-1}}{(n-1)!}\right)
$$

80. $L^{-1}\left[e^{a x}\right]=$ \qquad

UNIT - V

81.If $f(p)$ is a vector then the function $f(p)$ is called a \qquad function.
(Ans : vector point)
82. $\frac{d}{d t}(r . r)=$ \qquad
a) $\frac{d r}{d t}$
b) $2 r \frac{d r}{d t}$
c) $\mathrm{r} \frac{d t}{d r}$
d) $2 \mathrm{r} \frac{d t}{d r}$
(Ans : b)
83.If f is a constant vector $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$ are all zeros and hence_ \qquad
(Ans :curl $\mathrm{f}=0$ or $\operatorname{div} \mathrm{f}=0$)
84.If f is a vector such that curl $f=0$ for all points in the region ,then it is called an \qquad
(Ans : irrotational vector)
85. $\operatorname{Grad} \varphi$ is defined by

$$
\text { (Ans : } \nabla \varphi=\frac{i \varphi}{\partial x}+\mathrm{j} \frac{\partial \varphi}{\partial y}+\mathrm{k} \frac{\partial \varphi}{\partial z} \text {) }
$$

86.The vector differential operator ∇ is defined by \qquad
(Ans: $\nabla=\mathrm{i} \frac{\partial}{\partial x}+\mathrm{j} \frac{\partial}{\partial y}+\mathrm{k} \frac{\partial}{\partial z}$)
87.The divergence of f is defined by \qquad
(Ans: $\nabla . \mathrm{f}=\frac{\partial \mathrm{f} 1}{\partial x}+\frac{\partial \mathrm{f} 2}{\partial y}+\frac{\partial \mathrm{f} 3}{\partial z}$)
88.If f is a vector such that div $f=0$ then it is said to be \qquad
(Ans: Solenoidal)
89.If r is a vector of constant direction, then $\mathrm{r} \times \frac{d r}{d t}=$ \qquad
a) 0
b)1
c) 2
d) -1
(Ans: a)
90.Say true or false
$\operatorname{Grad}(\varphi \Psi)=\varphi \operatorname{grad} \Psi+\Psi \operatorname{grad} \varphi$
91.If $r=x i+y j+z k$ then $\operatorname{div} r=$
a)0
b) 3
c) 2
d) 1
(Ans :b)
92. Say true or false $\operatorname{div}(u \times v)=v . c u r l u+u . c u r l v$
(Ans :False)
93. $\nabla^{2}=\frac{\partial^{2}}{\partial x}+\frac{\partial^{2}}{\partial y}+\frac{\partial^{2}}{\partial z}$ is called the \qquad
(Ans: Laplacian Operator)
94.If $\mathrm{A} \& \mathrm{~B}$ are irrotational then $\mathrm{A} \times \mathrm{B}$ is \qquad
(Ans :Solenoidal)
95.Find $\nabla \varphi$ to the surface $x^{2} y-2 x z^{2}=8$ at the point $(1,0,2)$ is \qquad
a) $8 i+j+8 k$
b) $4 i+j+8 k$
c) $4 i+4 j+8 k$
d)none
(Ans: a)
96.Say true or false
$\operatorname{div} f$ is a scalar
(Ans : True)
97. Say true or false curl f is a vector
(Ans : True)
98.The value of $\nabla \times(\nabla \varphi)$ is \qquad
(Ans:0)
99. $\nabla \varphi \cdot d r=$ \qquad
a) 1
b) 0
c) 2
d)-1
(Ans: b)
100. Say true or false

If $r=x i+y j+z k$ then curl $r=0$
(Ans : True)

ARULMIGU PALANIANDAVAR ARTS COLLEGE FOR WOMEN (AUTONOMOUS)

(Affiliated to Mother Teresa Women's University, Kodaikanal) (NATIONALLY RE-ACCREDITED WITH "A" GRADE BY NAAC) PALANI.

STATISTICS

PART - A

1. ---------------- tell us the direction and extent of asymmetry in a series permit us to compare two or more series Ans: Measures of skewness
2. Karl pearson coefficient of skewness is defined by $S_{k p}=-----$

Ans : (Mean-Mode)/(Standard deviation) or 3(Mean-Median)/ σ
3. Bowley's coefficient of Skewness is given by $\mathrm{S}_{\mathrm{KB}}=$

Ans: $\left(\mathrm{Q}_{3}+\mathrm{Q}_{1}-2\right.$ Median $) /\left(\mathrm{Q}_{3}-\mathrm{Q}_{1}\right)$
4. The moment about mean are called the ----------- Ans: Central moment (μ)
5. If $\beta_{1}=0$ the distribution is -------Ans: Symmetric
6. $\beta_{1}>0$ the frequence distribution has -------Ans: Positive Skewness
7. If $\beta_{1}<0$ the If frequence distribution has -------Ans: Nagative Skewness
8. The $\mathrm{r}^{\text {th }}$ moment about any point A denoted by μ_{r} is defined by-

Ans: $\mu_{r}=\sum f_{i}(X-A)^{r} / N$
9. The $r^{\text {th }}$ moment about arithmetic mean Xof a frequency distribution is given by -----------------------Ans: $\mu_{r}=\sum f_{i}\left(X_{I}-X\right)^{\mathrm{r}} / \mathrm{N}$
$10 . \beta_{1}=--------$ is called the measure of skewness Ans: $\beta_{1=} \mu_{3}{ }^{2} / \mu_{2}{ }^{3}$
11.In Symmetric distribution odd moments are always -----------Ans: Zero
12.----------------is the degree of peakedness of a distribution usually taken relative to a normal distribution Ans: Kurtosis
13.For a curve the normal curve $\beta_{2}<3$ or $\gamma_{2}<0$ and such a curve is known as-----------------Ans: Platykurtic
14.For a curve the normal curve $\beta_{2}>3$ or $\gamma_{2}>0$ and such a curve is known as-----------------Ans: Leptokurtic
15.For a normal curve $\beta_{2}=3$ or $\gamma_{2}=0$ and such a curve is known as---------------Ans:Messokurtic
16.Karl pearson and Bowley's are ---------------Ans: absolute measures of skewness
17.The most important measure of Kurtosis is the value of the coefficient β_{2} is defined as--------- Ans: $\beta_{2}=\mu_{4} / \mu_{2}{ }^{2}$
18. γ_{2} is used as measure of defined as ------------Ans: $\gamma_{2}=\beta_{2}-3$
19. $\mu_{2}=\mu_{2}{ }^{1}-\left(\mu_{1}{ }^{1}\right)^{2}$ is the --------------- of the frequency distribution Ans: Variance
20. The first moment μ_{1} about origin coiocides with the \qquad frequency distribution.Ans: Arithmetic mean
21.The karl pearson co-efficient of correlation is \qquad Ans: $\underline{r}=\sum\left(\mathrm{X}_{\mathrm{i}}-\ddot{\mathrm{X}}\right)\left(\mathrm{Y}_{\underline{i}}-\overline{\mathrm{Y}}\right) / \mathrm{N} \sigma_{\underline{x}} \underline{\sigma}_{y}$
22. σ_{x} is the \qquad of series X. Ans: standard deviation
23.The value of the co-efficient of correlation always lie between \qquad
A) +1
B)-1
C) ± 1 D) 0
Ans : ± 1
24.In correlation when $r=-1$,it means there is \qquad negative_correlation between the variables. Ans : Perfect
25.In correlation when $r=+1$, it means there is perfect \qquad correlation between the variables. Ans :Positive
26.In correlation when \qquad ,it means there is no relationship between the two variables. Ans : r=0
27.The covariance of two series X and Y is defined by

28.Direct method of finding out correlation co-efficient is
29. $\underline{r}=\left\{N \sum X_{i} \underline{Y}_{\underline{i}}-\left(\sum X_{i}\right)\left(\sum Y_{i}\right)\right\} /\left\{\sqrt{N} \sum X_{i}{ }^{2}-\left(\sum X_{i}\right)^{2} \sqrt{N} \sum Y_{\underline{i}}{ }^{2}-\left(\sum Y_{i}\right)^{2}\right\}$
30.The formula for calculating the co-efficient of correlation of grouped data is
\qquad Ans: $\mathrm{r}=\frac{\mathrm{N} \sum \mathrm{fd}_{x} \underline{\mathrm{~d}}_{y}-\left(\sum \mathrm{fd}_{x}\right)\left(\sum \mathrm{fd}_{y}\right)}{\sqrt{\mathrm{N}\left(\sum \mathrm{fd}_{x}^{2}\right)-\left(\sum \mathrm{fd}_{x}\right)^{2} \sqrt{\mathrm{~N}}\left(\sum \mathrm{fd}_{y}^{2}\right)-\left(\sum \mathrm{fd}_{y}\right)^{2}}}$
21.when the numbers is large,the data are often classified into \qquad called a correlation table. Ans : two way frequency distribution
22.The spearman's rank correlation co-efficient is defined as

$$
\text { Ans : } \mathrm{R}=1--\frac{6 \sum \mathrm{D}^{2}}{\mathrm{~N}\left(\mathrm{~N}^{2}-1\right)}
$$

23. The correlation co-efficient is independent of the change of \qquad Ans: origin and scale
24.If the variables $x \& y$ are uncorrelated then \qquad Ans: $\left.\sum \mathrm{X}-\ddot{\mathrm{X}}\right)(\mathrm{Y}-\overline{\mathrm{Y}})=0$.
25.The \qquad is added for each repeated rank of the variables.
Ans: correction factor
26.The equation of the regression line of Y on X is \qquad Ans: $\mathrm{Y}-\overline{\mathrm{Y}}=\underline{\mathrm{r} \sigma_{y}(\mathrm{X}-\ddot{\mathrm{X}})}$
σ_{x}
27.The equation of the regression line of X on Y is \qquad Ans: $X-\ddot{X}=r \underline{\sigma}_{\underline{x}}(Y-\bar{Y})$
σ_{y}
28.If the curve is a straight line it is called a \qquad between the two variables. Ans : line of regression
29.If there is a functional relationship between the two variables $X_{i} \& Y_{i}$ the points in the scatter diagram will cluster around some curve called the Ans : curve of regression.
30.The regression co-efficient of X on Y is given by $b_{x y}=r . \underline{\sigma}_{\underline{x}}$
σ_{y}
31.The regression co-efficient of Y on X is given by $b_{y x}=r \cdot \underline{\sigma}_{y}$ σ_{x}
32.If one of the regression co-efficients is greater than unity the other is
\qquad Ans : less than unity.
33.The sign of the correlation co-efficient is the same as that of \qquad Ans : regression co-efficients.
44.The correlation co-efficient is the \qquad between the regression co- efficients. Ans : geometric mean.
24. \qquad of the regression co-efficients is greater than or equal to the correlation co-efficient. Ans: Arithmetic mean
46.The two variables are uncorrelated then the lines of regression are
to each other.Ans: perpendicular
47.The obtuse angle between the regression lines is given by Ans: $\tan ^{-1}\left[\left(\mathrm{r}^{2}-1 / \mathrm{r}\right)\left(\sigma_{\mathrm{x}} \sigma_{\mathrm{y}} / \sigma_{\mathrm{x}}{ }^{2}+\sigma_{\mathrm{y}}^{2}\right)\right]$.
48.The angle between two regression lines is given by Ans : $\left.\theta=\tan ^{-1}\left[\left(\mathrm{r}^{2}-1\right) / \mathrm{r}\right)\left(\sigma_{\mathrm{x}} \sigma_{y} / \sigma_{\mathrm{x}}^{2}+\sigma_{\mathrm{y}}{ }^{2}\right)\right]$.
34.45.If there is a perfect correlation between the two variables then the two regression lines \qquad Ans : coincide.
50.If $r= \pm 1$, then $\theta=0$ or π, then the two lines of regression are \qquad Ans: Parallel.
51.The probability attached to such an event is caled the \qquad and is denoted by $\mathrm{P}(\mathrm{A} / \mathrm{B})$. Ans: conditional probability
52.The two events A and B are dependent then the conditional probability of B given Ais \qquad Ans: $\mathrm{P}(\mathrm{B} / \mathrm{A})=\mathrm{P}(\mathrm{AB}) / \mathrm{P}(\mathrm{A})$.
25. $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B} / \mathrm{A})$ this relation is called \qquad theorem for probabilities. Ans: multiplication
26. A is said to be independent of B if \qquad Ans : $\mathrm{P}(\mathrm{A} / \mathrm{B})=\mathrm{P}(\mathrm{A})$.
55.If A and B are two independent events then \qquad
Ans : $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B})$.
27. \qquad is known as Baye's rule. Ans: $\mathrm{P}\left(\mathrm{A}_{\mathrm{i}} / \mathrm{B}\right)=\left\{\mathrm{P}\left(\mathrm{A}_{\mathrm{i}}\right) \mathrm{P}\left(\mathrm{B} / \mathrm{A}_{\mathrm{i}}\right)\right\} / \mathrm{P}(\mathrm{B})$
57.The events $\mathrm{A}_{1} \mathrm{~A}_{2} \ldots \mathrm{~A}_{\mathrm{n}}$ are said to be \qquad if $\mathrm{P}\left(\mathrm{A}_{1} \cap \mathrm{~A}_{2} \ldots \cap \mathrm{~A}_{\mathrm{n}}\right)=$ $\mathrm{P}\left(\mathrm{A}_{1}\right) \mathrm{P}\left(\mathrm{A}_{2}\right) \ldots \mathrm{P}\left(\mathrm{A}_{\mathrm{n}}\right)$. Ans : mutually independent
58.A set of events $\mathrm{A}_{1} \mathrm{~A}_{2} \ldots \mathrm{~A}_{\mathrm{n}}$ are said to be \qquad if $\mathrm{P}\left(\mathrm{A}_{\mathrm{i}} \cap \mathrm{A}_{\mathrm{j}}\right)=$ $\mathrm{P}\left(\mathrm{A}_{\mathrm{i}}\right) \mathrm{P}\left(\mathrm{A}_{\mathrm{j}}\right)$ for all $\mathrm{i} \neq \mathrm{j}$. Ans : pairwise independent
59.If $\mathrm{A}_{\mathrm{i}} \cap \mathrm{A}_{\mathrm{j}}=\emptyset$ for all i, j with $\mathrm{i} \neq \mathrm{j}$ then the sequence of subsets is said to be Ans : mutually disjoint.
60.If ${ }^{\infty} U_{n=1} A_{n}=S$ then the sequence of events is said to be \qquad
Ans: exhaustive.
61.The mathematical expectation of X , denoted by $\mathrm{E}(\mathrm{X}), \mathrm{E}(\mathrm{X})$ is defined by
\qquad Ans: $\sum \underline{P}_{\underline{X}} \underline{X}_{\text {. }}$.
62.A variable whose value is determined by the outcome of a random experiment is called a \qquad Ans : random variable.
63.If the random variable takes the integer values it is called a \qquad Ans : discrete random variable.
64.If the random variable takes all values, within a certain interval then the random variable is called a \qquad Ans : continuous random variable.
65.If ${ }_{-\infty} \int^{\infty} f(x) d x=1$ then $f(x)$ is called the \qquad of continuous random variable of X . Ans : probability density function
66.The function $\mathrm{F}: \mathrm{R} \rightarrow \mathrm{R}$ defined by $\mathrm{F}(\mathrm{x})=\mathrm{P}(\mathrm{X} \leq \mathrm{x})$ where $-\infty<\mathrm{x}<\infty$ is called a
\qquad of the random variable of X .
28. A random variable is also known as stochastic variable.
68.The binomial distribution is also known as Bernoulli distribution.
69.A discrete random variable of the P.d.f. of \qquad if $\mathrm{r}=0,1 \ldots \mathrm{n}$ is said to have binomial distribution. Ans: $\mathrm{p}(\mathrm{r})=\mathrm{nc}_{\mathrm{r}} \mathrm{p}^{\mathrm{r}} \mathrm{q}^{\mathrm{n}-\mathrm{r}}$
70.M.g.f of a binomial distribution about the origin is \qquad A ns: $\left(q+e^{t}\right)^{n}$. 71.M.g.f about the mean $n p$ of a binomial distribution is___A ns: $\left(\mathrm{qe}^{-\mathrm{pt}}+\mathrm{pe}^{\mathrm{q}}\right)^{\mathrm{n}}$. 72. Characteristic function of binomial distribution is \qquad Ans: $\left(\mathrm{q}+\mathrm{pe}^{\mathrm{it}}\right)^{\mathrm{n}}$.
73.Using M.g.f about the mean of the binomial distribution we can find \qquad $\mu_{2}, \mu_{3}, \mu_{4}$. Ans : central moments
74.If $\mathrm{X}_{1} \sim \mathrm{~B}\left(\mathrm{n}_{1}, \mathrm{P}\right), \mathrm{X}_{2} \sim \mathrm{~B}\left(\mathrm{n}_{2}, \mathrm{P}\right)$ are independent random variables then $\mathrm{X}_{1}+\mathrm{X}_{2}$ is \qquad Ans: $\mathrm{B}\left(\mathrm{n}_{1}+\mathrm{n}_{2}, \mathrm{P}\right)$.
29. Recurrence relation for $\mathrm{p}(\mathrm{x})$ in binomial distribution is \qquad Ans: $\mathrm{P}(\mathrm{x}+1)=(\mathrm{n}-\mathrm{x} / \mathrm{x}+1)(\mathrm{p} / \mathrm{q}) \mathrm{P}(\mathrm{x})$.
76.Recurrence formula of moments of the binomial distribution is
\qquad Ans : $\mu_{\mathrm{r}+1}=\mathrm{pq}\left[\mathrm{nr} \mu_{\mathrm{r}-1}+\underline{\mathrm{d}} \mu_{\mathrm{r}}\right]$
dp .
77.If $(\mathrm{n}+1) \mathrm{p}$ is an integer will represent mode and the distribution is \qquad Ans: bimodal.
78.If $(\mathrm{n}+1) \mathrm{p}$ is not an integer will represent mode and the distribution is
\qquad Ans: unimodal.
79.The standard deviation of binomial distribution is \qquad Ans: $\sqrt{ } \mathrm{npq}$.
80.The mean of binomial distribution is \qquad Ans: np.
81.The two independent constants n and p in the distribution are known as the
\qquad of the distribution.

Ans : parameters
82. Find the mode of a binomial distribution $\mathrm{B}(7,1 / 4)$ is \qquad Ans: 1\&2.
83.The measure of skewness of the binomial distribution is \qquad Ans: $\gamma_{1}=\sqrt{ } \beta_{1}$.
84.The measure of kurnotosis of the binomial distribution is \qquad Ans : $\gamma_{2}=\beta_{2}-3$.
85.A is defined as $P(x)=P(X=x)=\left\{\frac{e^{-\lambda} \lambda^{x}}{x!}\right.$ if $x=0,1,2 \ldots$
x!

Where λ is a parameter of the distribution. Ans : poisson distribution
86.Mean of the poisson distribution is \qquad Ans: λ.
87.The S.D of the poisson distribution is \qquad Ans: $\sqrt{ } \mathrm{m}$.
88. Recurrence relation of pdf in poisson distribution is \qquad
Ans : $p(x+1)=(\lambda / x+1) p(x)$.
89. \qquad of the poisson distribution is $\lambda-1 \leq \mathrm{x} \leq \lambda$. Ans : Mode
90 .If λ is an integer $\lambda-1$ is also an integer then mode is \qquad of the poisson distribution.Ans: bimodal
91.If λ is not an integer ,then the mode will represented \qquad of poisson distribution. Ans : unimodal
92.M.g.f of the poisson distribution about $\mathrm{r}=0$ is \qquad Ans: $\mathrm{e}^{\lambda(\mathrm{et}-1)}$.
93.The value of $\lambda \sigma \gamma_{1} \gamma_{2}=$ \qquad Ans:1.
94. Characteristic function of the poisson distribution is \qquad Ans: $\mathrm{e}^{\lambda(\text { eit-1) }}$.

Staff in charge

